Error bounds for the linear complementarity problem with a P-matrix

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Error Bounds for P-matrix Linear Complementarity Problems

We give new error bounds for the linear complementarity problem where the involved matrix is a P-matrix. Computation of rigorous error bounds can be turned into a P-matrix linear interval system. Moreover, for the involved matrix being an H-matrix with positive diagonals, an error bound can be found by solving a linear system of equations, which is sharper than the Mathias-Pang error bound. Pre...

متن کامل

A Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem

In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.

متن کامل

a quadratically convergent interior-point algorithm for the p*(κ)-matrix horizontal linear complementarity problem

in this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (hlcps). the algorithm uses only full-newton steps which has the advantage that no line searchs are needed. moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.

متن کامل

New improved error bounds for the linear complementarity problem

New local and global error bounds are given for both nonmonotone and monotone linear complementarity problems. Comparisons of various residuals used in these error bounds are given. A possible candidate for a "best" error bound emerges from our comparisons as the sum of two natural residuals.

متن کامل

A Simple P-Matrix Linear Complementarity Problem for Discounted Games

The values of a two-player zero-sum binary discounted game are characterized by a P-matrix linear complementarity problem (LCP). Simple formulas are given to describe the data of the LCP in terms of the game graph, discount factor, and rewards. Hence it is shown that the unique sink orientation (USO) associated with this LCP coincides with the strategy valuation USO associated with the discount...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1990

ISSN: 0024-3795

DOI: 10.1016/0024-3795(90)90058-k